The Actual4Labs experts regularly add these changes in the Actual4Labs Databricks-Generative-AI-Engineer-Associate exam dumps questions so that you do not miss a single Databricks-Generative-AI-Engineer-Associate exam update. With the purchasing of Actual4Labs Databricks-Generative-AI-Engineer-Associate exam practice questions you get an opportunity to get free Actual4Labs Databricks-Generative-AI-Engineer-Associate Exam Dumps questions updates for up to 1 year from the date of Actual4Labs Databricks-Generative-AI-Engineer-Associate exam questions purchase.
Topic | Details |
---|---|
Topic 1 |
|
Topic 2 |
|
Topic 3 |
|
Topic 4 |
|
Topic 5 |
|
>> Databricks-Generative-AI-Engineer-Associate Book Pdf <<
Many students often start to study as the exam is approaching. Time is very valuable to these students, and for them, one extra hour of study may mean 3 points more on the test score. If you are one of these students, then Databricks Certified Generative AI Engineer Associate exam tests are your best choice. Because students often purchase materials from the Internet, there is a problem that they need transport time, especially for those students who live in remote areas. When the materials arrive, they may just have a little time to read them before the exam. However, with Databricks-Generative-AI-Engineer-Associate Exam Questions, you will never encounter such problems, because our materials are distributed to customers through emails. After you have successfully paid, you can immediately receive Databricks-Generative-AI-Engineer-Associate test guide from our customer service staff, and then you can start learning immediately.
NEW QUESTION # 37
A small and cost-conscious startup in the cancer research field wants to build a RAG application using Foundation Model APIs.
Which strategy would allow the startup to build a good-quality RAG application while being cost-conscious and able to cater to customer needs?
Answer: D
Explanation:
For a small, cost-conscious startup in the cancer research field, choosing a domain-specific and smaller LLM is the most effective strategy. Here's whyBis the best choice:
* Domain-specific performance: A smaller LLM that has been fine-tuned for the domain of cancer research will outperform a general-purpose LLM for specialized queries. This ensures high-quality responses without needing to rely on a large, expensive LLM.
* Cost-efficiency: Smaller models are cheaper to run, both in terms of compute resources and API usage costs. A domain-specific smaller LLM can deliver good quality responses without the need for the extensive computational power required by larger models.
* Focused knowledge: In a specialized field like cancer research, having an LLM tailored to the subject matter provides better relevance and accuracy for queries, while keeping costs low.Large, general- purpose LLMs may provide irrelevant information, leading to inefficiency and higher costs.
This approach allows the startup to balance quality, cost, and customer satisfaction effectively, making it the most suitable strategy.
NEW QUESTION # 38
When developing an LLM application, it's crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.
Which action is NOT appropriate to avoid legal risks?
Answer: C
Explanation:
* Problem Context: When using data to train a model, it's essential to ensure compliance with licensing to avoid legal risks. Legal issues can arise from using data without permission, especially when it comes from third-party sources.
* Explanation of Options:
* Option A: Reaching out to data curatorsbeforeusing the data is an appropriate action. This allows you to ensure you have permission or understand the licensing terms before starting to use the data in your model.
* Option B: Usingoriginal datathat you personally created is always a safe option. Since you have full ownership over the data, there are no legal risks, as you control the licensing.
* Option C: Using data that is explicitly labeled with an open license and adhering to the license terms is a correct and recommended approach. This ensures compliance with legal requirements.
* Option D: Reaching out to the data curatorsafteryou have already started using the trained model isnot appropriate. If you've already used the data without understanding its licensing terms, you may have already violated the terms of use, which could lead to legal complications. It's essential to clarify the licensing termsbeforeusing the data, not after.
Thus,Option Dis not appropriate because it could expose you to legal risks by using the data without first obtaining the proper licensing permissions.
NEW QUESTION # 39
A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.
What is the most performant way to store this dataframe?
Answer: D
Explanation:
* Problem Context: The engineer needs an efficient way to store chunks of unstructured documents to facilitate easy retrieval and search. The current dataframe consists of document filenames and associated text chunks.
* Explanation of Options:
* Option A: Splitting into train and test sets is more relevant for model training scenarios and not directly applicable to storage for retrieval in a Vector Search index.
* Option B: Flattening the dataframe such that each row contains a single chunk with a unique identifier is the most performant for storage and retrieval. This structure aligns well with how data is indexed and queried in vector search applications, making it easier to retrieve specific chunks efficiently.
* Option C: Creating a unique identifier for each document only does not address the need to access individual chunks efficiently, which is critical in a Vector Search application.
* Option D: Storing each chunk as an independent JSON file creates unnecessary overhead and complexity in managing and querying large volumes of files.
OptionBis the most efficient and practical approach, allowing for streamlined indexing and retrieval processes in a Delta table environment, fitting the requirements of a Vector Search index.
NEW QUESTION # 40
A Generative Al Engineer is building a production-ready LLM system which replies directly to customers.
The solution makes use of the Foundation Model API via provisioned throughput. They are concerned that the LLM could potentially respond in a toxic or otherwise unsafe way. They also wish to perform this with the least amount of effort.
Which approach will do this?
Answer: B
Explanation:
The task is to prevent toxic or unsafe responses in an LLM system using the Foundation Model API with minimal effort. Let's assess the options.
* Option A: Host Llama Guard on Foundation Model API and use it to detect unsafe responses
* Llama Guard is a safety-focused model designed to detect toxic or unsafe content. Hosting it via the Foundation Model API (a Databricks service) integrates seamlessly with the existing system, requiring minimal setup (just deployment and a check step), and leverages provisioned throughput for performance.
* Databricks Reference:"Foundation Model API supports hosting safety models like Llama Guard to filter outputs efficiently"("Foundation Model API Documentation," 2023).
* Option B: Add some LLM calls to their chain to detect unsafe content before returning text
* Using additional LLM calls (e.g., prompting an LLM to classify toxicity) increases latency, complexity, and effort (crafting prompts, chaining logic), and lacks the specificity of a dedicated safety model.
* Databricks Reference:"Ad-hoc LLM checks are less efficient than purpose-built safety solutions" ("Building LLM Applications with Databricks").
* Option C: Add a regex expression on inputs and outputs to detect unsafe responses
* Regex can catch simple patterns (e.g., profanity) but fails for nuanced toxicity (e.g., sarcasm, context-dependent harm), requiring significant manual effort to maintain and update rules.
* Databricks Reference:"Regex-based filtering is limited for complex safety needs"("Generative AI Cookbook").
* Option D: Ask users to report unsafe responses
* User reporting is reactive, not preventive, and places burden on users rather than the system. It doesn't limit unsafe outputs proactively and requires additional effort for feedback handling.
* Databricks Reference:"Proactive guardrails are preferred over user-driven monitoring" ("Databricks Generative AI Engineer Guide").
Conclusion: Option A (Llama Guard on Foundation Model API) is the least-effort, most effective approach, leveraging Databricks' infrastructure for seamless safety integration.
NEW QUESTION # 41
A Generative Al Engineer is ready to deploy an LLM application written using Foundation Model APIs. They want to follow security best practices for production scenarios Which authentication method should they choose?
Answer: D
Explanation:
The task is to deploy an LLM application using Foundation Model APIs in a production environment while adhering to security best practices. Authentication is critical for securing access to Databricks resources, such as the Foundation Model API. Let's evaluate the options based on Databricks' security guidelines for production scenarios.
* Option A: Use an access token belonging to service principals
* Service principals are non-human identities designed for automated workflows and applications in Databricks. Using an access token tied to a service principal ensures that the authentication is scoped to the application, follows least-privilege principles (via role-based access control), and avoids reliance on individual user credentials. This is a security best practice for production deployments.
* Databricks Reference:"For production applications, use service principals with access tokens to authenticate securely, avoiding user-specific credentials"("Databricks Security Best Practices,"
2023). Additionally, the "Foundation Model API Documentation" states:"Service principal tokens are recommended for programmatic access to Foundation Model APIs."
* Option B: Use a frequently rotated access token belonging to either a workspace user or a service principal
* Frequent rotation enhances security by limiting token exposure, but tying the token to a workspace user introduces risks (e.g., user account changes, broader permissions). Including both user and service principal options dilutes the focus on application-specific security, making this less ideal than a service-principal-only approach. It also adds operational overhead without clear benefits over Option A.
* Databricks Reference:"While token rotation is a good practice, service principals are preferred over user accounts for application authentication"("Managing Tokens in Databricks," 2023).
* Option C: Use OAuth machine-to-machine authentication
* OAuth M2M (e.g., client credentials flow) is a secure method for application-to-service communication, often using service principals under the hood. However, Databricks' Foundation Model API primarily supports personal access tokens (PATs) or service principal tokens over full OAuth flows for simplicity in production setups. OAuth M2M adds complexity (e.g., managing refresh tokens) without a clear advantage in this context.
* Databricks Reference:"OAuth is supported in Databricks, but service principal tokens are simpler and sufficient for most API-based workloads"("Databricks Authentication Guide," 2023).
* Option D: Use an access token belonging to any workspace user
* Using a user's access token ties the application to an individual's identity, violating security best practices. It risks exposure if the user leaves, changes roles, or has overly broad permissions, and it's not scalable or auditable for production.
* Databricks Reference:"Avoid using personal user tokens for production applications due to security and governance concerns"("Databricks Security Best Practices," 2023).
Conclusion: Option A is the best choice, as it uses a service principal's access token, aligning with Databricks' security best practices for production LLM applications. It ensures secure, application-specific authentication with minimal complexity, as explicitly recommended for Foundation Model API deployments.
NEW QUESTION # 42
......
How to pass the Databricks-Generative-AI-Engineer-Associate exam and gain a certificate successfully is of great importance to people who participate in the exam. Here our company can be your learning partner and try our best to help you to get success in the Databricks-Generative-AI-Engineer-Associate exam. Why should you choose our company with Databricks-Generative-AI-Engineer-Associate Preparation braindumps? We have the leading brand in this carrer and successfully help tens of thousands of our customers pass therir Databricks-Generative-AI-Engineer-Associate exam and get admired certification.
Databricks-Generative-AI-Engineer-Associate Reliable Dumps Pdf: https://www.actual4labs.com/Databricks/Databricks-Generative-AI-Engineer-Associate-actual-exam-dumps.html